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Effect of Chronic Antipsychotic Treatment on Brain
Structure: A Serial Magnetic Resonance Imaging Study
with Ex Vivo and Postmortem Confirmation
Anthony C. Vernon, Sridhar Natesan, Mike Modo, and Shitij Kapur

Background: There is increasing evidence that antipsychotic (APD) may affect brain structure directly. To examine this, we developed a
rodent model that uses clinically relevant doses and serial magnetic resonance imaging (MRI), followed by postmortem histopathological
analysis to study the effects of APD on brain structures.

Methods: Antipsychotic , haloperidol, and olanzapine were continuously administered to rats via osmotic minipumps to maintain clinic-
like steady state levels for 8 weeks. Longitudinal in vivo MRI scanning (T2-weighted) was carried out at baseline, 4 weeks, and 8 weeks, after
which animals were perfused and their brains preserved for ex vivo MRI scanning. Region of interest analyses were performed on magnetic
resonance images (both in vivo as well as ex vivo) along with postmortem stereology using the Cavalieri estimator probe.

Results: Chronic (8 weeks) exposure to both haloperidol and olanzapine resulted in significant decreases in whole-brain volume (6% to 8%)
compared with vehicle-treated control subjects, driven mainly by a decrease in frontal cerebral cortex volume (8% to 12%). Hippocampal,
corpus striatum, lateral ventricles, and corpus callosum volumes were not significantly different from control subjects, suggesting a
differential effect of APD on the cortex. These results were corroborated by ex vivo MRI scans and decreased cortical volume was confirmed
postmortem by stereology.

Conclusions: This is the first systematic whole-brain MRI study of the effects of APD, which highlights significant effects on the cortex.
Although caution needs to be exerted when extrapolating results from animals to patients, the approach provides a tractable method for

linking in vivo MRI findings to their histopathological origins.
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T he advent of atypical antipsychotic (APD) in the 1990s cre-
ated an impression they were safer than previous typical APD
(1). Early intervention, use in bipolar disorders, polyphar-

acy, and increasing off-label use to treat children and adolescents
or aggressive behavior have led to a dramatic increase in prescrip-
ions in the last decade (2– 6). Along with this increase in use,
vidence from clinical and primate postmortem studies suggest
hronic exposure to APD may be associated with a reduction in
rain volume, particularly gray matter (7–10). While the data are not
nequivocal (11,12), the increasing use of APD makes it critical that

his issue is examined rigorously.
Postmortem brains from schizophrenic patients show signifi-

ant structural abnormalities (7,13–18), with evidence for slight
hrinkage (�5%) of the brain in terms of weight, length, and cortical
olume (14,19,20) and for enlarged (�15%) ventricles (13,14,19 –
3). These studies come from patients with a long duration of illness
nd APD exposure; thus, distinguishing effect(s) of illness from APD
ecomes difficult. Interestingly, longitudinal studies suggest the
egree of change in frontotemporal cortical gray matter is often
ssociated with intensity or duration of APD treatment (24 –29).
owever, the lack of longitudinally followed untreated patients as a
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ontrol means it remains unclear whether this outcome is the effect
f illness progression or APD treatment. Further, none of the human
tudies have linked the imaging changes to postmortem findings
nd therefore the relationship between imaging-related structural
hanges and postmortem findings remains unclear (7,15).

Animal studies have usually focused on a single APD (haloperi-
ol [HAL]), often given at doses 10 times higher that the clinical
ose and with inappropriate pharmacokinetics (7,30). The only rig-
rous postmortem study to date, using clinic-like plasma levels and

ong-term exposure (2.5 years) (8,31) demonstrated a �10% reduc-
ion in total brain weight and volume following treatment with
ither HAL or olanzapine (OLZ) in primates. This study suggests
educed brain volume and parietal gray or white matter reduction,
raditionally accorded to the illness, may be influenced by APD
xposure. However, these single-point, cross-sectional, histopatho-

ogical studies do not use whole-brain imaging methods, limiting
ross-species comparison with clinical measurements.

To overcome these limitations, we have developed a rodent
odel using a clinically relevant drug exposure by matching D2

eceptor occupancy with a method of continuous delivery using
smotic infusion pumps (30). A typical APD (HAL) and an atypical
PD (OLZ) were administered chronically (8 weeks). Effects on brain
olume were determined from longitudinal in vivo magnetic reso-
ance imaging (MRI) scans acquired at baseline, 4 weeks, and 8
eeks. These measurements were corroborated by ex vivo MRI and
ostmortem histology.

ethods and Materials

nimals
Male Sprague-Dawley rats (Charles River UK, Ltd., Kent, United

ingdom), initial body weight 240 g to 250 g (9 weeks of age) were
oused four per cage under a 12-hour light/dark cycle (7:00 AM

ights on) with food and water available ad libitum. Room temper-

ture was maintained at 21 � 2°C and relative humidity at 55 �
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10%. Animals were habituated for 7 days before experimental pro-
cedures. Animal experiments were carried out with local ethical
approval and in accordance with the Home Office Animals (Scien-
tific Procedures) Act, United Kingdom.

Experimental Design
A repeated measures design was employed in which vehicle

(�-hydroxypropylcyclodextrin, 20% wt/vol, acidified by ascorbic
acid to pH 6), HAL (2 mg/kg/day; Sigma-Aldrich, Gillingham, Dorset,
United Kingdom), and OLZ (10 mg/kg/day; Biophore Pharmaceuti-
cals Ltd, Hyderabad, Andra Pradesh, India) were administered using
osmotic minipumps for 8 weeks (approximately 5 human years,
considering 11.8 rat days equals 1 human year) (32). The doses of
each APD were chosen based on previous D2 receptor occupancy
studies in our laboratory (30); serum plasma levels achieved follow-
ing chronic administration in this study reflect D2 occupancy in the
range of 75% to 90% (30), similar to clinical exposure. The osmotic
pump delivers at a steady rate in comparison with daily injections
where drug levels fall to undetectable levels in 24 hours (half-life �
2.5 hours in rats for most antipsychotics). Each treatment group
comprised n � 8 animals. The MRI-safe osmotic minipumps (Alzet
Model 2ML4, 28 days; Alzet, Cupertino, California) filled with drug or
vehicle solutions were inserted subcutaneously on the back flank
under isoflurane anesthesia (5% induction, 1.5% maintenance) and
replaced once after 28 days. In vivo MRI scans were acquired at
baseline, 4 weeks and 8 weeks after the start of APD treatment.
Animals were then killed by cardiac perfusion (.9% saline followed
by 4% paraformaldehyde) under terminal anesthesia (sodium pen-
tobarbital, 60 mg/kg intraperitoneal). Brains preserved in the skull
were then scanned ex vivo and rinsed with phosphate-buffered
saline before scanning, to assess changes due to tissue fixation.
Postmortem, brain volumes were measured using unbiased stere-
ology on Nissl-stained tissue sections (see below). Dyskinetic be-
havior, i.e., vacuous chewing movements (VCMs), was assessed at
baseline, 2 weeks, 4 weeks, and 8 weeks after the start of APD
treatment. This involved a simple measurement of purposeless
chewing jaw movements in a 2-minute period, outside the home
cage as described previously (33). A blood sample was collected at

Figure 1. A representative set of ex vivo coronal T2-weighted images acqu
outlining of (A) whole brain, (B) intracranial volume, (C) cerebral cortex and

ventral hippocampus on both in vivo and ex vivo images. Contour borders were d
and the anatomical criteria shown in Table S1 in Supplement 1.
ermination for estimation of drug levels, done commercially using
andem mass spectrometry. Body weight was measured biweekly,
tarting before minipump implantation until termination.

agnetic Resonance Image Acquisition
In vivo T2-weighted (T2W) magnetic resonance (MR) images

ere acquired under isoflurane anesthesia (5% induction, 1.5%
aintenance) in random order during each session, using a 7.0T

orizontal small bore magnet (Varian, Palo Alto, California) with
ustom-built head radiofrequency coil (David Herlihy, Imperial Col-

ege London, United Kingdom) connected to a console running
nmrJ acquisition software (v2.3; Varian) (34). In vivo T2W images
ere acquired using a multiecho, multislice spin-echo pulse sequence:

eld of view�35 mm�35 mm; matrix�192�192; repetition time�
200 msec; echo time � 10, 20, 30, 40, 50, 60, 70, 80 msec; 4 averages,
4 minutes. Ex vivo T2W images were acquired using modified multi-
cho, multislice spin-echo pulse sequence: field of view � 30 mm � 30
m; matrix � 256 � 256; repetition time � 4200 msec; echo time �

0, 20, 30, 40, 50, 60, 70, 80 msec; 8 averages, 2 hours 30 minutes. For
oth in vivo and ex vivo scans, 50 contiguous 500 �m-thick coronal
lices were acquired to cover the entire brain of the animal. Before
nalysis, MR images were visually inspected for motion or intensity
rtefacts. One animal from the haloperidol group (8 weeks) was ex-
luded from further analysis on this basis.

R Image Analysis
From in vivo and ex vivo MR images, whole brain, intracranial,

ortical, and subcortical structure (striatum, hippocampus, lateral
entricles, corpus callosum) volumes were delineated manually by
wo reviewers (A.C.V. and S.N.) on a slice-by-slice basis in the coronal
lane using the region of interest (ROI) tool in ImageJ software

National Institutes of Health, Bethesda, Maryland; http://rsb.info.nih.
ov/ij/), blinded to treatment. For each structure analyzed, ROI con-

ours were traced in both brain hemispheres at low magnification
ollowed by manual correction of borders at higher magnification (34).
ample ROI contours for each region are shown (Figure 1). Measure-
ents of T2 relaxivity in the cortex and striatum were made from

from a control rat to illustrate region of interest contours used for manual
s striatum, (D) lateral ventricles and corpus callosum, and (E) dorsal and (F)
ired
corpu
efined as previously described (34) using a standard rodent brain atlas (35)

www.sobp.org/journal
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quantitative T2 maps using an identical ROI-based approach (34).
Clear anatomical landmarks and reference to the rodent brain atlas
(35) were used to define ROI contours (Table S1 in Supplement 1).
Volumes were calculated by multiplying the sum of the areas of a
given structure on all slices measured by the slice thickness (500
�m). Intrarater and interrater reliability were assessed following
repeated measurements using the intraclass correlation coefficient
as previously described (36).

Postmortem Tissue Handling and Volume Measurements
Following ex vivo imaging, brains were removed and cryopro-

tected in buffered 30% sucrose for 48 hours before storage in tissue
cryoprotection solution (25% glycerin [vol/vol] 30% ethylene glycol
[vol/vol] in .2 mol/L phosphate buffer). Measurements of brain
weight and volume were repeated at each step in the tissue pro-
cessing, as described elsewhere (37). Serial coronal sections (40 �m,
nterval 1/12) were cut on a freezing microtome at �20°C and
tored in tissue cryoprotection solution containing .05% sodium
zide until further processing. Sections were washed in .1 mol/L
hosphate buffer before mounting in series onto gelatin-coated
lides and allowed to adhere by air drying before Nissl staining
sing cresyl fast violet solution (10% wt/vol; Sigma-Aldrich). A sin-
le observer (A.C.V.) blinded to experimental group by coding mea-
ured cortical and striatal volume using the Cavalieri estimator
robe method. An Olympus microscope with charge-coupled de-
ice camera and XYZ motorized specimen stage (Olympus UK Ltd.,
outhend-on-Sea, Essex, United Kingdom) connected to a personal
omputer running Stereo investigator software v7.0 (MBF BioSci-
nce, Williston, Vermont) was used. Stereological analysis was car-
ied out using systematic random sampling from a section interval
f 1 in 12, choosing a random starting section for each series, over

he entire brain corresponding to the number of slices measured on
R images. Briefly, a contour was drawn around the region corre-

ponding to cortex or striatum in each section. A grid of points (150 �
150 �m) was superimposed over each section and all the points lying

ithin the counter recorded automatically by the software. From these
ounts, using the Cavalieri method (38), the volume of each region was
stimated as: V � Ta	Pi, where T is the mean slice thickness, a is the

area per point, and Pi is the number of points hitting the marked
egion. Coefficients of error were calculated with values � .10 ac-
epted (39).

ata and Statistical Analyses
Statistics were performed using SPSS 17.0 software (SPSS Inc.,

hicago, Illinois). Longitudinal assessment of variables was per-
ormed using two-way repeated measures analysis of variance
ANOVA) with one between-subject factor (treatment) and one

ithin-subject factor (time) followed by post hoc Bonferroni evalu-

tion if criteria for statistical significance were met. Postmortem e

ww.sobp.org/journal
rain weight and volume changes and Cavalieri probe estimates of
rain volume were analyzed using one-way ANOVA followed by
unnett’s post hoc procedure. Vacuous chewing movements be-

ause of APD treatment were analyzed using repeated measures
onparametric Friedman test followed by pairwise nonparametric
omparisons using paired sample t test. Correlations between in
ivo and ex vivo measurements were modeled using Pearson prod-
ct moment or Spearman’s rank correlation as appropriate. An 


evel of .05 was selected.

esults

lasma Levels and Behavior
Administration of APD by osmotic pump achieved plasma levels

mean � SD) of 20.58 � 1.99 ng/mL for HAL and 60.13 � 20.75
g/mL for OLZ, respectively. The emergence of VCMs in both HAL
nd OLZ treated animals by 2 weeks confirmed animals were re-
ponding to the APD (Figure 2). However, there was poor correla-
ion (Spearman’s � � .112; ns) between drug plasma levels and VCM
ehavior at 8 weeks. The dosing regimen used in this study was

ailored to capture clinical practice, i.e., OLZ with a median dose of
5 mg and HAL often in the range of 5 to 10 mg. The results may
ave been different if the minimal therapeutic dose (i.e., 10 mg of
LZ or 2–3 mg of HAL) were modeled. A detailed dose-response

tudy may be helpful in the future. Control and APD-treated ani-
als gained weight (Table 1); although, in the first 2 weeks, APD-

reated animals gained less weight compared with the control
roup (Figure S1 in Supplement 1).

ntracranial and Whole-Brain Volumes
To establish the effect(s) of HAL and OLZ, whole-brain volume

WBV) was measured on T2W MR images. Potential confounding
ffects of animal growth can be identified by changes in intracranial
olume. Although intracranial volume significantly increased with
ime (Table 2, Figure 3A), it did so comparably for all groups. Hence,
here was no effect of APD treatment on growth (Figure 3A). To
ccount for intra-animal variation in intracranial volume, their base-

Figure 2. Chronic antipsychotic drug treatment induces
stereotypical vacuous chewing movement behavior,
which was apparent from 2 weeks of treatment onward
and was maintained until 8 weeks. Data shown are indi-
vidual vacuous chewing movement (VCM) scores (scatter
plot with median) for control and antipsychotic drug-
treated animals across time (*p � .05 haloperidol vs. vehi-
cle and olanzapine vs. vehicle, respectively). BL, baseline;
Wk, week.

able 1. Change in Body Weight over Time in Vehicle- and Antipsychotic
rug-Treated Animals

Body Weight (g)
ime Point Vehicle Haloperidol Olanzapine

aseline 271.1 � 3.1 265.1 � 3.3 269.8 � 2.9
eek 2 312.3 � 6.1 291.6 � 6.8 291.8 � 7.1
eek 4 342.6 � 7.9 314.0 � 7.8 323.8 � 6.0
eek 6 354.4 � 8.2 324.1 � 9.3 328.8 � 5.8
eek 8 353.0 � 8.2 318.8 � 9.1 324.4 � 6.0
Data shown are body weight (mean � SEM) for each treatment group at
ach time point.
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line measurement was used as a covariate for analyses of brain
volumes.

Before administration of APD, there was no significant differ-
ence in WBV (Figure 3B). Chronic treatment (8 weeks) with HAL or
OLZ resulted in significantly decreased WBV (Figure 3B), high-
lighted by a time � treatment interaction (Table 2). This mean

ercentage reduction in WBV was calculated to be �7.45% (HAL-
ehicle) and �6.22% (OLZ-vehicle). There was no significant differ-
nce in this effect between HAL- and OLZ-treated animals. No sig-
ificant effect of APD treatment on WBV was observed after 4 weeks

reatment, suggesting long treatment duration is required for this

Table 2. Summary of ANOVA for In Vivo MRI Quantified Brain Volumes

Variable

Two-Way Repeated Me

Within Subjects

Time
Time � Treat

Interactio

Whole Brain Volume F(2,38) � 3.84; p � .5 F(4,38) � 3.47;

Lateral Ventricular Volume F(2,38) � 2.23; p � .5 F(4,38) � 2.91;
Cerebral Cortex Volume F(2,38) � .21; p � .5 F(4,38) � 10.87

Corpus Striatum Volume F(2,38) � 1.22; p � .5 F(4,38) � 1.23;
Hippocampus Volume F(2,38) � .487; p � .5 F(4,38) � 1.45;
Corpus Callosum Volume F(2,38) � .06; p � .5 F(4,38) � 4.03;

Results of two-way repeated measures ANOVA statistics for longitudinal
treatment served as between-subject factor and time as within-subject fact

ANOVA, analysis of variance; APD, antipsychotic drug; MRI, magnetic res

Figure 3. Chronic antipsychotic drug treatment results in a global decrease
volumes. (A) Mean � SEM intracranial volume in each group at baseline, 4
treatment group at baseline, 4 weeks, and 8 weeks of treatment (*p � .05 h
lateral ventricular volume in each treatment group at baseline, 4 weeks,

treatment group at 8 weeks to illustrate the lack of lateral ventricular volume cha
lateral ventricular; WB, whole brain; Wk, week.
ffect. A significant correlation was observed between VCM behav-
or and WBV at 8 weeks (Spearman’s � � �.421; p � .05).

ateral Ventricles
There was no significant effect of time or APD treatment on

ateral ventricle (LV) volume (Table 2, Figure 3C), as illustrated by
epresentative MR images from each group (Figure 3D).

erebral Cortex and Subcortical Structures
To pinpoint the areas in the brain that account for smaller WBV

bserved after APD treatment, a detailed analysis of neuroanatomi-

s ANOVA

Post Hoc Test (Bonferroni’s Test for
Multiple Comparisons)

Between Groups

Treatment

F(2,19) � 1.89; p � .5 8 Wks p � .5 vehicle vs. haloperidol
8 Wks p � .5 vehicle vs. olanzapine
8 Wks p � .5 haloperidol vs. olanzapine

F(2,19) � .48; p � .5 n.d.
.5 F(2,19) � 2.33; p � .5 8 Wks p � .5 vehicle vs. haloperidol

8 Wks p � .5 vehicle vs. olanzapine
8 Wks p � .5 haloperidol vs. olanzapine

5 F(2,19) � 1.61; p � .5 n.d.
5 F(2,19) � .31; p � .5 n.d.
5 F(2,19) � 2.25; p � .5 n.d.

o MRI volume measurements using intracranial volume as a covariate. APD

ce imaging; n.d., not determined; Wks, weeks.

vivo whole-brain volume, with no effect on intracranial or lateral ventricle
s, and 8 weeks of treatment. (B) Mean � SEM whole-brain volume in each
ridol vs. vehicle and olanzapine vs. vehicle, respectively). (C) Mean � SEM
weeks of treatment. (D) Representative T2-weighted images from each
asure

ment
n

p � .5

p � .5
; p �

p � .
p � .
p � .

in viv
or.
of in
week
alope
and 8
nge (�.72, distance from bregma in mm). BL, baseline; IC, intracranial; LV,

www.sobp.org/journal
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cal structures was conducted. Cerebral cortex (CTX) volume was
significantly reduced after chronic APD treatment (8 weeks) but not
at any other time point (Table 2, Figure 4A). Both HAL-treated (p �
.01) and OLZ-treated (p � .05) animals showed a significant reduc-
tion of CTX volume compared with vehicle-treated control animals
(Figure 4A). No significant difference was observed between HAL-
and OLZ-treated animals. The mean percentage reduction in CTX
volume was calculated to be �11.99% (HAL-vehicle) and �8.08%
(OLZ-vehicle), respectively. Slice profile analysis of cortical volume
revealed highly significant effects overall for APD drug treatment
[F (2,420) � 121.8; p � .0001] and slice position [F (20,420) � 152.1;
p � .0001] but no interaction between APD treatment and slice
position [F (40,420) � .874; p � ns]. Post hoc testing confirmed that
HAL- and OLZ-treated animals had significantly smaller slice vol-
umes in the frontal cortex (Figure 4B). Notably, HAL treatment was
associated with volume decreases in more widespread cortical ar-
eas, while OLZ-treated animals only showed changes in the frontal
cortex. Changes in CTX volume were significantly correlated to VCM
behavior at 8 weeks (Spearman’s � � �.522; p � .05).

Longitudinal analysis of total corpus striatum (STR) volume (left 

right hemisphere) revealed no effect of either time or APD treatment
(Table 2). However, STR volume in HAL-treated, but not OLZ-treated,
animals showed a trend toward an increase after 4 weeks of treatment,
although this had normalized by 8 weeks (Figure 4C). No significant
correlation was observed between VCM behavior and STR volume at 4
weeks (Spearman’s � � .328; ns). However, when these data were
stratified to exclude low responders (�5 VCM score), a trend toward
correlation emerged (Spearman’s � � .447; p � .055). Despite signifi-
cant effects in the frontal cortex, there was no significant effect of APD
treatment on hippocampal formation volume (Table 2, Figure 4D). To

investigate whether white matter structures were affected equally to t

ww.sobp.org/journal
ray matter, we measured the volume of the corpus callosum. There
as, however, no significant effect of APD exposure on this structure

Table 2, Figure 4E).

omparison between in Vivo and Ex Vivo MR Imaging
To determine the effects of perfusion fixation on brain volumes

ollowing chronic APD exposure, we performed ex vivo high-reso-
ution MRI on perfusion-fixed brains. Overall, there was a compara-
le reduction of brain volume after perfusion for each ROI in all

reatment groups (Table 3). Importantly, good correspondence be-
ween in vivo and ex vivo MRI measurements for each brain region
as highlighted by very significant correlations between volumes

Table 3). Further, the mean percentage reduction in WBV was
omparable in vivo to ex vivo (HAL: �8.99% vs. �7.45%; OLZ
7.75% vs. �6.22%), as was the reduction in CTX volume (HAL:
8.73% vs. �11.99%; OLZ: �5.93% vs. �8.08%).

2 Relaxivity Measurements
T2 relaxivity was measured in the CTX and STR (Table S2 in

upplement 1). Only a significant effect of time was evident in both
he CTX [F (2,42) � 10.11; p � .01] and STR [F (2,42) � 7.36; p � .01].
evertheless, APD treatment did not influence tissue characteris-

ics as measured by T2 relaxivity.

ostmortem Brain Weight and Volume Measurements
Fresh mean brain weights did not differ significantly between

roups following dissection of the brains from the skull after perfu-
ion and ex vivo imaging, although one-way ANOVA suggested a
rend toward significant differences overall between groups
F (2,21) � 2.941; p � .07] (Figure S2 in Supplement 1). Similarly,

Figure 4. Chronic antipsychotic drug treatment induces
in vivo cortical volume decrease but no change in corpus
striatum, hippocampal formation, or corpus callosum vol-
ume. (A) Mean � SEM cortical volume in each treatment
group at baseline, 4 weeks, and 8 weeks of treatment (*p
� .05; **p � .01 haloperidol (HAL) vs. vehicle and olanzap-
ine vs. vehicle, respectively). (B) Slice profile analysis of
cortical volume in each treatment group suggests volume
decreases in antipsychotic drug-treated animals are local-
ized to frontal cortical regions (*p � .05; HAL vs. vehicle; �
p � .05; olanzapine vs. vehicle). (C) Mean � SEM striatal
volume in each treatment group at baseline, 4 weeks, and
8 weeks of treatment. Note the apparent striatal enlarge-
ment at 4 weeks, particularly in HAL-treated animals. (D)
Mean � SEM hippocampal volume in each treatment
group at baseline, 4 weeks, and 8 weeks of treatment. (E)
Mean � SEM corpus callosum volume in each treatment
group at baseline, 4 weeks, and 8 weeks of treatment. BL,
baseline; CC, corpus callosum; CTX, cortical; HPC, hip-
pocampal; STR, striatal; Wk, week.
here was no significant difference in brain volume, although,



M
h

D

i
m
r
H
r
m
8
c
n
o
T
s

W

C

A.C. Vernon et al. BIOL PSYCHIATRY 2011;69:936–944 941
again, there was a trend toward significant differences overall be-
tween groups [F (2,21) � 2.944; p � .07]. Importantly, during the
three phases of tissue processing, brain weight and volume, respec-
tively, changed in a similar manner across the three exposure
groups (Figure S2 in Supplement 1). Over time in storage, brain
weight appeared to return to initial volumes, while brain volume
did not (Figure S2 in Supplement 1).

Postmortem Measurement of Brain Volume Changes by the
Cavalieri Estimator Probe Method

Postmortem volume analysis using the Cavalieri probe method
revealed a significant overall difference in CTX volume between
treatment groups [F (2,21) � 7.574; p � .01]. Post hoc testing con-
firmed a significant reduction in CTX volume of HAL-treated (p �
.05) and OLZ-treated (p � .05) animals compared with vehicle-
treated control animals (Figure 5A). For STR volume, no overall
significant difference between groups was observed [F (2,21) �
1.022; ns] (Figure 5B). Volumes measured from in vivo MRI, ex vivo

Table 3. Comparison Between In Vivo MRI Scans and Perfused Brain Ex Viv

Brain Region Group In Vivo MRI (cm3)

hole Brain Vehicle 1.451 � .012
Haloperidol 1.324 � .049
Olanzapine 1.348 � .022

Intracranial Volume Vehicle 1.869 � .026
Haloperidol 1.719 � .051
Olanzapine 1.813 � .052

Cerebral Cortex Vehicle .398 � .008
Haloperidol .346 � .011
Olanzapine .368 � .004

Corpus Striatum Vehicle .0530 � .001
Haloperidol .0544 � .007
Olanzapine .0528 � .001

Hippocampus Vehicle .0548 � .0008
Haloperidol .0512 � .0018
Olanzapine .0553 � .0015

Lateral Ventricles Vehicle .00503 � .0002
Haloperidol .00508 � .0001
Olanzapine .00473 � .0001

orpus Callosum Vehicle .0122 � .0002
Haloperidol .0125 � .005
Olanzapine .0112 � .006

MRI, magnetic resonance imaging.
aCorrelation significant at p � .01 level.
bCorrelation significant at p � .05 level.

Figure 5. Postmortem confirmation of decreased cortical but not striatal vo

probe method. (A) Individual cortical volume (scatter plot with mean) in vehicle an
vehicle, respectively). (B) Individual striatal volume (scatter plot with mean) in ve
RI, and these postmortem histological measurements were
ighly correlated and reinforced the same differences (Table 4).

iscussion

This is the first in vivo longitudinal study in rodents demonstrat-
ng that chronic (8 weeks) APD treatment results in altered brain

orphology. We observed a decrease in WBV and CTX volume in
ats chronically treated with therapeutically relevant doses of either
AL or OLZ (40,41). Exposure to either drug resulted in similar

eductions in brain volumes, compared with vehicle-treated ani-
als, the magnitude of these effects being 6% to 8% on WBV and

% to 12% on CTX volume, respectively. The effects of APD were
onfined to the frontal cortex (prefrontal and cingulate cortex) and
o effect was observed in the hippocampus. No significant effects
f APD treatment were observed on the volume of the STR or LV.
he volume of the corpus callosum was also unaffected, perhaps
uggesting that APD effects are prominent in gray matter. We con-

Scans for Individual Brain Region Volumetric Data

Ex Vivo MRI (cm3) % Shrinkage
Correlation

In Vivo to Ex Vivo

1.333 � .027 8.12 .779a

1.234 � .049 6.76
1.238 � .022 8.19
1.653 � .048 11.55 .539a

1.616 � .041 6.01
1.638 � .032 9.69

.366 � .004 8.04 .851a

.333 � .007 6.01

.344 � .009 6.62
.0518 � .001 2.26 .608a

.0539 � .001 .93

.0507 � .001 3.97

.0527 � .001 3.83 .669a

.0502 � .004 1.99

.0514 � .0006 7.02
.00500 � .0003 .50 .649a

.00507 � .0001 .26

.00468 � .0003 1.12
.0107 � .0004 12.28 .418b

.0097 � .0005 22.41

.0103 � .0002 7.40

in animals chronically treated with antipsychotic (APD) using the Cavalieri
o MRI
lume

d APD-treated animals (*p � .05; haloperidol vs. vehicle and olanzapine vs.

hicle and APD-treated animals. CTX, cerebral cortex; CPu, corpus striatum.

www.sobp.org/journal
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firmed our MRI findings postmortem using an unbiased stereology
method. Significant correlations between in vivo, ex vivo, and post-
mortem findings validate our imaging findings.

The present results raise several important issues. First, our find-
ings are consistent with previous postmortem studies in primates
(8,31,37). These demonstrated that macaque monkeys chronically
treated (2.5 years) with HAL or OLZ at dosages that produced a
serum concentration equivalent to medicated patients showed an
approximate 10% reduction in brain weight relative to monkeys
receiving placebo. These changes were most robust in the frontal
and parietal lobes (37), consistent with our findings in the rat cortex.

Second, the clinical literature suggests differential effects of typ-
ical and atypical APD on brain volumes (10). Striatal hypertrophy is
commonly associated with typical APD, while atypical APD are as-
sociated with smaller striatal volumes (28,42– 46). Importantly, pre-
vious chronic studies in rodents have lacked therapeutic equiva-
lence, because animals were either dosed intermittently (daily
injections) or not for sufficient duration; thus, it is difficult to make
comparisons with the present study (7). We observed a trend to-
ward striatal enlargement after 4 weeks in HAL-treated animals, but
this normalized by 8 weeks, in contrast to extant data (47). This
discrepancy may reflect a methodological difference in the analysis
of brain volumes due to the use of adjusted volumes based on ratios
between striatum and whole brain in this previous study (47). We
observed no effect of OLZ treatment (8 weeks) on striatal volume.
Potentially, striatal hypertrophy could therefore represent an early
event following typical APD treatment (48); however, while some
studies support this notion (49,50), others do not (51–53).

Third, HAL treatment (4 weeks) has been shown to increase hip-
pocampal volume in rats (54). However, we did not observe any in-
crease in HAL-treated animals, consistent with clinical data (55,56).
Early volume changes during antipsychotic treatment may therefore
reflect transient physiological changes associated with neuroplastic
processes (57–61). Further studies are required to elucidate the rela-
tionship between acute APD treatment and brain volumes.

Importantly, our data are subject to limitations. First, the age of
the rats at the initiation of treatment (10 weeks) corresponds to late
adolescence in humans (32). Typically, the age of onset for schizo-
phrenia is 15 to 18 years (adolescent) and 19 to 30 years of age
(adult), respectively (62). Consequently, further experimentation in
younger and older animals is required.

Second, it is not known if antipsychotic-induced structural brain
changes relate to functional behavior. However, previous studies
have shown chronic APD treatment (�75 days) results in disruption
of spatial memory acquisition and retention in rats (63,64). Never-
theless, future studies are required to identify the functional conse-
quences of APD-induced brain morphological changes.

Third, we used manual segmentation to measure brain volumes.
This is a robust and widely used method of analysis (34,65) but it is
labor-intensive, prone to bias, requires a priori hypotheses, and is
relatively insensitive to subtle morphological change (66). We have

Table 4. Correlation Between In Vivo MRI, Ex Vivo MRI, and Postmortem
avalieri Probe Measurements of Cortical and Striatal Volume of All
reatment Groups

Brain Region
In Vivo MRI—Postmortem

Cavalieri Probe
Ex Vivo MRI—Postmortem

Cavalieri Probe

erebral Cortex .817a .708a

Corpus Striatum .538a .830a

MRI, magnetic resonance imaging.
aCorrelation significant at p � .05 level.
limited potential bias through repeated measurements of the same k

ww.sobp.org/journal
tructures at different times, by independent examiners blinded to
nimal treatment status. High intrarater and interrater reliability
ere achieved (�.9), suggesting robust segmentation of each brain

tructure. Application of voxel-based automated morphometric
nalysis techniques, for instance deformation based morphometry,
ay overcome the limitations of manual segmentation (66,67).
owever, voxel-based methods have their limitations and should
e complemented by atlas-based methods (68), which yield quan-

itative measures of segmented brain regions.
Fourth, our experimental design does not address whether the

PD-induced morphological changes are reversible, a question of
ignificant theoretical and practical relevance. Drug withdrawal
tudies to address this possibility are currently underway.

Consistent with previous data (37), both HAL and OLZ resulted in
imilar effects on brain structure. A common mechanism to both these
gents is antagonism of dopamine D2/3 receptors (1). Interestingly, D2
eceptors are expressed in pyramidal cells within lamina V and VI in the
at prefrontal cortex (69), consistent with the location of volume
hange in the current study. Notably, blockade of D2/3 receptors re-
ults in increased turnover of dopamine in the acute and subacute
hase (70,71), which may result in cytotoxic free radical generation and
xidative damage. Evidence from primate studies suggests this may
e realized by a reduction in cortical glia cell number at the anatomical

evel (8,31); this is yet to be confirmed in rodent studies. Although a
2/3 receptor driven mechanism seems most plausible, a few issues
eed to be considered. The STR has the highest concentration of D2/3

eceptors; thus, turnover-related oxidative stress would be expected to
e highest therein. However, we found no volume change in the STR. It
ay be, therefore, that other mechanisms (delayed signaling via the

kt and glycogen synthase kinase 3 pathways) (72) or idiosyncratic
echanisms for each drug are responsible. Notably, APD-treated ani-
als gained less weight in the first 2 weeks of drug treatment. These

ata may be interpreted as chronic APD treatment blunts somatic and
erhaps brain growth, leading to lower brain volumes, as opposed to
rain tissue loss, although incidentally this is observed only after 8
eeks. In the absence of a detailed post-mortem examination, how-

ver, we cannot exclude this possibility. Clearly, further analysis is re-
uired to unravel the neurobiology underlying APD-induced morpho-
etric change.

Three main findings are commonly reported in schizophrenia:
ateral ventricle and striatal hypertrophy and a robust reduction in
ortical gray matter volume. Ventricular enlargement is the most
obust finding in terms of brain morphological changes in schizo-
hrenia and is probably less influenced by APD exposure (73–75).
ur study found no effect of chronic APD treatment on LV, reiterat-

ng that this change is probably due to the disease process. Early
triatal enlargement seems to be most clearly related to APD treat-

ent, as it is seen only in drug-treated patients, particularly with
ypical APD, and is plausibly linked to D2 blockade (45,48,75,76).
owever, as stated earlier, striatal changes appear to be sensitive to

iming after acute APD administration and may be reversible
45,48,75,76). Patients with schizophrenia show reductions in corti-
al gray matter volume and several studies raise the possibility that
PD may exacerbate to this abnormality (25,28,76 –79). Our data
ould be consistent with such a proposal. However, it needs to be
ointed out that these studies were done in normal rats, while APD
re given to patients with schizophrenia. The animals in the current
tudy were healthy and did not capture the innate pathology of
chizophrenia. Thus, while there is little reason to think animals

odeling schizophrenia would not show this reduction, whether
ave an additive or synergistic effect with illness is unaddressed by

his study. Further, as the mechanism of this effect remains un-

nown, until this effect is better understood or convincingly re-
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futed, one should be very cautious in drawing clinical inferences.
Lastly, this study had relatively small numbers and replication in a
larger number of subjects will be an important advance.

Overall, the results indicate that chronic APD treatment in ro-
dents leads to distinct morphological changes, primarily in the
cerebral cortex. The confirmation of the finding in vivo, ex vivo, and
validating it against postmortem data add certainty to the finding
and offers a system to investigate the underlying neurobiology of
apparent APD morphological changes in the brain.
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