Prevalence of tardive dystonia

R. Yassa, V. Nair and R. Dimitry
Douglas Hospital (Director, Douglas Hospital Research Centre: Dr. N. P. V. Nair) Verdun Quebec, Canada

ABSTRACT - Tardive dystonia is a rare late-onset side effect of neuroleptics. This paper presents a prevalence study of 351 inpatients conducted in our hospital. Seven patients (2% of total) were found to suffer from this condition. The majority were found to be young and had received neuroleptics for a variable number of years before the onset of the dystonia. In general, treatment of this condition is disappointing.

Since 1957, tardive dyskinesia (TD) has been described in the literature as being a long-term side effect of neuroleptics (1). More recently, tardive dystonia, another tardive manifestation of neuroleptic-induced movement disorders, has been described (2, 3). Keegan & Rajput (2) reporting on one patient with drug-induced torticollis, coined the term. Burke et al. (3) described the characteristics of tardive dystonia in 42 patients and reviewed 15 cases reported in the literature up until 1982. Their criteria for diagnosing tardive dystonia were: 1) presence of chronic dystonia; 2) history of anti-psychotic drug treatment preceding or concurrent with the onset of dystonia; 3) exclusion of known causes of secondary dystonia by appropriate clinical and laboratory evaluation; 4) a negative family history of dystonia. The same authors also subdivided dystonia into: generalized dystonia, occurs in the whole body, and more common in younger individuals; segmental dystonia involves more than one body region; focal dystonia, remains confined to its site of onset. The latter two occurred in older individuals. The authors advocated that tardive dystonia was not a separate entity from TD. Following this important study, several case reports were added to the literature (4-8).

Dystonic symptoms have been reported in 97 patients assessed for movement disorders by Crane & Naranjo (9). No other prevalence studies on tardive dystonia have been reported.

This paper attempts to define the factors leading to the development of this disorder in a large number of patients.

Material and methods

All the inpatients (n = 351; 161 men and 190 women) in the adult chronic wards of Douglas Hospital (including the psychogeriatric units) were examined for drug-induced movement disorders. Tardive dystonia was identified by using the guidelines described by Burke et al. (3) and outlined above. TD was assessed using the Simpson Rating Scale for TD (10). The scale consists of 42 items divided into body areas: face (16 items), neck and trunk (7 items), and extremities (19 items). The subscales concerning tardive dystonia are distributed among the different body area scales: grimacing (item 16), retrocollis (item 18), spasmodic torticollis (item 19), torticollis movements of trunk (item 20). In addition, any other item not appearing in the scale was added to items, others. The scale varies in severity from absent = 1 to very severe = 6.

After the patients were examined, all those diagnosed as exhibiting tardive dystonia were
reexamined by two psychiatrists to confirm the
diagnosis. The patient was then examined by a
neurologist for the presence of the Kayser-
Fleischer ring and also to confirm the diagnosis.
The following were also performed to exclude
other conditions causing dystonia: ceruloplasmin,
liver function tests and thyroid function
tests. Also the patients’ family members were
interviewed to inquire about familial movement
disorders.

Results

All the patients had normal thyroid function
tests and their ceruloplasmin was within normal
limits. There was no evidence of familial move­
ment disorder as recounted by the patients and
their family members.

Table 1
Demographic characteristics of tardive dystonia patients

<table>
<thead>
<tr>
<th>No.</th>
<th>Age</th>
<th>Sex</th>
<th>Primary diagnosis</th>
<th>Antipsychotic drugs mg/day</th>
<th>Ethnic origin</th>
<th>Interval of exposure to anti-psychotic drugs prior to dystonia onset</th>
<th>Other movement disorders</th>
<th>Duration of dystonia (years)</th>
<th>Description severity of dystonia</th>
<th>Other manifestations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>26</td>
<td>M</td>
<td>schizophrenia</td>
<td>haloperidol 8 Indiana</td>
<td>Indian</td>
<td>5 years</td>
<td>mild buccocoral TD</td>
<td>5</td>
<td>torticollis, dystonic posturing of arms and legs</td>
<td>retrocollis</td>
</tr>
<tr>
<td>2</td>
<td>35</td>
<td>M</td>
<td>schizophrenia</td>
<td>haloperidol 60 Anglo-Saxon</td>
<td>Anglo-Saxon</td>
<td>13 years</td>
<td>respiratory TD</td>
<td>6</td>
<td>torticollis, blepharospasm retrocollis</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>37</td>
<td>M</td>
<td>schizophrenia</td>
<td>fluphenazine 25 q 2 wks chlorpromazine 150 benztripe 4</td>
<td>Anglo-Saxon</td>
<td>6 years</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>38</td>
<td>M</td>
<td>schizophrenia</td>
<td>chlorpromazine 200 Anglo-Saxon</td>
<td>Anglo-Saxon</td>
<td>5 years</td>
<td>parkinsonian tremors in both arms, rigidity on right side</td>
<td>9</td>
<td>retrocollis, lor­dosis, dystonic posturing of arms and legs</td>
<td>hemiballismus</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td>M</td>
<td>schizophrenia</td>
<td>chlorpromazine 600 benztripe 4</td>
<td>Indian</td>
<td>17 years</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>44</td>
<td>F</td>
<td>mental retardation</td>
<td>chlorpromazine 500 benzo­tripe 600</td>
<td>Anglo-Saxon</td>
<td>12 years</td>
<td>spasm of pharyngeal muscles, shoulder shrugging, mild buccocoral TD moderate buccocoral TD, respiratory TD</td>
<td>6</td>
<td>retrocollis, reticollis, opisthotonous</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>78</td>
<td>F</td>
<td>senile dementia</td>
<td>discontinued 2 years previously</td>
<td>Anglo-Saxon</td>
<td>13 months</td>
<td></td>
<td>2</td>
<td>retrocollis</td>
<td></td>
</tr>
</tbody>
</table>

Prevalence of tardive dystonia. Seven of the 351
assessed patients suffered from manifestations of
tardive dystonia (2%): five of 161 men (3.1%) and
two of 190 women (1%). This difference is
not statistically significant ($\chi^2 = 1.88$).

Of the patient population, 101 were less than
50 years (43 women, 58 men). Of this group, six
patients developed tardive dystonia (5.9%) as
compared to one patient of 250 over the age of
50 (147 women, 103 men), constituting 0.4% of
this patient population. This difference is highly
significant ($\chi^2 = 8.6, P < 0.005$).

Table 2
Treatment of tardive dystonia

<table>
<thead>
<tr>
<th>Patient</th>
<th>Type</th>
<th>Antipsychotic drugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Diazep.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Baclofe</td>
<td>Lithium Neurole disconti</td>
</tr>
<tr>
<td>3</td>
<td>Reserpi</td>
<td>Leithbl Bronox Neurole disconti</td>
</tr>
<tr>
<td>4</td>
<td>Neurle disconti</td>
<td>Benztro disconti</td>
</tr>
<tr>
<td>5</td>
<td>Propra</td>
<td>Baclofe Lithium Haloper</td>
</tr>
<tr>
<td>6</td>
<td>Neurle, disconti</td>
<td></td>
</tr>
</tbody>
</table>
TD manifestations occurred in five of the patients and in two, there were no other movement disorders.

Severity and awareness. Six patients were acutely aware of their symptoms. They were all embarrassed and complained that it was socially unacceptable. Two patients (Nos. 4 and 6) were concerned that their movements would lead to accidents while walking in the streets and they were ridiculed by their friends and became socially isolated. Patient 4, a male, found it very difficult to have satisfactory sexual relations with his girlfriend. This patient was reported in more detail in a separate manuscript (11). The movements in patient 1 interfered with any rehabilitative attempts carried out in our hospital. The treating physicians and nurses considered the movements in patients 1, 2, 3 and 6 as being of "hysterical" nature, citing the evidence that the symptoms become more pronounced when the patient is angry or anxious.

Duration of dystonia. This varied from 13 months to 15 years after the onset of neuroleptic treatment. The dystonia continued unchanged since its appearance in five patients, despite several treatment attempts as delineated in Table 2. None of the patients was of Jewish descent and most were diagnosed as suffering from schizophrenia (see Table 1 for details).

Neuroleptic intake. Patients 1, 4, 5, 6, 7 received only one neuroleptic during their whole treatment period: haloperidol (Nos. 1 and 7), chlorpromazine (Nos. 4 and 5) and thioridazine (No. 6). Patient 2 received trifluoperazine for 90 months, then haloperidol for 14 months before the appearance of the dystonia. Patient 3 received fluphenazine enanthate 25 mg every 2 weeks and chlorpromazine 150 mg/day throughout the treatment period. The total amounts of neuroleptics, in chlorpromazine equivalent (12), varied from 20 g (No. 7) to 2232 g (No. 2) with a mean of 724 g (± SEM 276.0). None of the

<table>
<thead>
<tr>
<th>Patient</th>
<th>Type of drug</th>
<th>Dose (mg/day)</th>
<th>Duration (months)</th>
<th>Type of drug</th>
<th>Dose (mg/day)</th>
<th>Duration (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Diazepam</td>
<td>300</td>
<td>3</td>
<td>Neuroleptics</td>
<td>discontinued</td>
<td>48</td>
</tr>
<tr>
<td>2</td>
<td>Baclofen</td>
<td>90</td>
<td>11</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>60</td>
<td>Benztropine</td>
<td>discontinued</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Reserpine</td>
<td>3</td>
<td>3</td>
<td>Baclofen</td>
<td>40</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Neuroleptics</td>
<td>discontinued</td>
<td>3</td>
<td>Benztropine</td>
<td>discontinued</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Neuroleptics</td>
<td>discontinued</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>Neuroleptics</td>
<td>discontinued</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 2

Treatment of tardive dystonia. Treatment attempts
patients had drug-free periods prior to the onset of the dystonia.

Antiparkinsonian medication was added to the treatment regimen of patients 2, 3, and 5. In addition to thioridazine, patient 6 received lithium carbonate 600 mg/day for about 3 years before the appearance of dystonia.

Tardive dystonia. Several attempts have been made to treat tardive dystonia, as outlined in Table 2. The duration of the tardive dystonia varied from 3 to 9 years from the time the first symptoms were described. All the symptoms that were first described were present at the time of the study, in five patients (Nos. 2, 3, 5, 6, 7). Patient 1 was symptom-free after discontinuation of neuroleptics for 48 months. Patient 4 improved greatly with baclofen 60 mg/day. His retrocollis improved but the parkinsonian tremors did not. Patient 5 was uncooperative and few attempts were made to treat his condition.

Discussion

Our study indicates that tardive dystonia is not a common manifestation of the late-onset neuroleptic-induced movement disorders (2% of 351 patients). This is slightly higher than that in the only available prevalence study on the subject (9), which estimates the prevalence of this side effect at 1%. On the other hand, the prevalence of TD has been estimated at 20% (13).

Burke et al. (3) and Gimenez-Roldan et al. (7) noted that patients suffering from tardive dystonia were mainly young men. Our findings confirm these observations. This is in contrast with TD, which increases with age (14) and seems to be more common especially in older women (15).

Tardive dystonia patients seem to be more aware of their movements than patients with TD. Six of our patients suffered as a result of their movements. These movements may interfere with their rehabilitation and may cause them undue harm. In general, TD patients seem to be oblivious of their movements (16) unless they affect the trunk and limbs (17).

In our patient population, phenothiazines of different subgroups were represented: of the aliphatic group, chlorpromazine was prescribed to two patients; of the piperidine group, thioridazine was the treatment for one patient, and of the piperazine group, trifluoperazine and fluphenazine enanthate have been administered. Haloperidol was also found to contribute to tardive dystonia in two patients. Thus, no particular treatment can be accused of causing the disorder.

Interestingly, antiparkinsonian medication has been used in three patients only, indicating that the contribution of these medications may be of minimal importance in the development of this side effect. In fact, Burke et al. (3) points out that some patients improved when antiparkinsonian medication was added to the treatment regimen.

Several conditions must be differentiated from tardive dystonia. These include Huntington disease, Parkinsonism, idiopathic torsion dystonia, and Wilson's disease. The latter could be ruled out by ceruloplasmin level as well as slit-lamp examination. Parkinson disease usually occurs in older patients. Idiopathic torsion dystonia usually begins in the limbs (18) and, not uncommonly, it affects the legs or trunk in the absence of face or neck movements. As seen in our patient population and in all cases reported in the literature, drug-induced tardive dystonia involves mainly the neck and face areas. In addition, neuroleptic use is not a prerequisite for the development of idiopathic torsion dystonia as it is with tardive dystonia.

Another possible differential diagnosis is idiopathic torticollis or Meige syndrome (blepharospasm-romandibular dystonia). Perhaps the only differentiating finding between these two conditions is the preceding use of neuroleptics in tardive dystonia (3).

The relationship between TD and tardive dystonia is difficult to assess at this stage. Several case reports have indicated that both conditions may coexist (19-21) but in some patients, one may precede the other. In our patient population, three (Nos. 1, 6, and 7) showed concomitant buccocorial TD. An interesting finding is the concomitant involvement of the respiratory and pharyngeal muscles in three of our patients (Nos. 2, 6, and 7) with or without buccocorial TD, thus it is conceivable that respiratory disturbances in TD patients may be of dystonic nature. Respiratory disturbances in reported to respond satisfactorily (22).

“Trick” movements dystonias (23). In our dystonic symptoms w th the head against a hard chair, or by flexing t he limbs di recting.

The treatment of dystonia has been satisfactory (24). Bromocriptine (25-27), levodopa (28), (20 mg b.i.d.). We attended in patient 4 without s may have been too low a dose.

Electroconvulsive therapy (29), in our series, complete recovery, af ter neuroleptics, at the psychotic behaviour. In medication was discontinue.

Discussion

Our study indicates that tardive dystonia is not a common manifestation of the late-onset neuroleptic-induced movement disorders (2% of 351 patients). This is slightly higher than that in the only available prevalence study on the subject (9), which estimates the prevalence of this side effect at 1%. On the other hand, the prevalence of TD has been estimated at 20% (13).

Burke et al. (3) and Gimenez-Roldan et al. (7) noted that patients suffering from tardive dystonia were mainly young men. Our findings confirm these observations. This is in contrast with TD, which increases with age (14) and seems to be more common especially in older women (15).

Tardive dystonia patients seem to be more aware of their movements than patients with TD. Six of our patients suffered as a result of their movements. These movements may interfere with their rehabilitation and may cause them undue harm. In general, TD patients seem to be oblivious of their movements (16) unless they affect the trunk and limbs (17).

In our patient population, phenothiazines of different subgroups were represented: of the aliphatic group, chlorpromazine was prescribed to two patients; of the piperidine group, thioridazine was the treatment for one patient, and of the piperazine group, trifluoperazine and fluphenazine enanthate have been administered. Haloperidol was also found to contribute to tardive dystonia in two patients. Thus, no particular treatment can be accused of causing the disorder.

Interestingly, antiparkinsonian medication has been used in three patients only, indicating that the contribution of these medications may be of minimal importance in the development of this side effect. In fact, Burke et al. (3) points out that some patients improved when antiparkinsonian medication was added to the treatment regimen.

Several conditions must be differentiated from tardive dystonia. These include Huntington disease, Parkinsonism, idiopathic torsion dystonia, and Wilson's disease. The latter could be ruled out by ceruloplasmin level as well as slit-lamp examination. Parkinson disease usually occurs in older patients. Idiopathic torsion dystonia usually begins in the limbs (18) and, not uncommonly, it affects the legs or trunk in the absence of face or neck movements. As seen in our patient population and in all cases reported in the literature, drug-induced tardive dystonia involves mainly the neck and face areas. In addition, neuroleptic use is not a prerequisite for the development of idiopathic torsion dystonia as it is with tardive dystonia.

Another possible differential diagnosis is idiopathic torticollis or Meige syndrome (blepharospasm-romandibular dystonia). Perhaps the only differentiating finding between these two conditions is the preceding use of neuroleptics in tardive dystonia (3).

The relationship between TD and tardive dystonia is difficult to assess at this stage. Several case reports have indicated that both conditions may coexist (19-21) but in some patients, one may precede the other. In our patient population, three (Nos. 1, 6, and 7) showed concomitant buccocorial TD. An interesting finding is the concomitant involvement of the respiratory and pharyngeal muscles in three of our patients (Nos. 2, 6, and 7) with or without buccocorial TD, thus it is conceivable that respiratory disturbances in TD patients may be of dystonic nature. Respiratory disturbances in reported to respond satisfactorily (22).

“Trick” movements dystonias (23). In our dystonic symptoms with the head against a hard chair, or by flexing the limbs directly.

The treatment of dystonia has been satisfactory (24). Bromocriptine (25-27), levodopa (28), (20 mg b.i.d.). We attended in patient 4 without a dose.

Electroconvulsive therapy (29), in our series, complete recovery, after neuroleptics, at the psychotic behaviour. In medication was discontinued.

References

4. Kwentus J A, Schulz C.
disease group, thio-
one patient, and inpatient administered. contributor to tardive dystonia, no particular using the disorder. medication has indicated that patients may be of development of this al. points out that antiparkinson-
he treatment regimen differentiated from Huntington's dystonia, er could be ruled well as slit-lamp: usually occurs in ion dystonia usu-
and, not uncommon in the absence As seen in our cases reported in tardive dystonia ice areas. In addi-
rerequisite for the ion dystonia as it diagnosis is idio-
stron dystonia (blepharospasm). Perhaps the between these two of neuroleptics in
and tardive dys-
this stage. Several at both conditions one patients, one popula-
concomitant finding is the con-
respiratory and our patients (Nos. cooral TD, thus it j nature. Respira-
tory disturbances in acute dystonia have been reported to respond to anticholinergic medica-
disturbances have been reported with dystonias (23). In our patient population, some dystonic symptoms were controlled by leaning the head against a hard surface, e.g. a wall or a chair, or by flexing the thorax and head while extending the limbs during manual work.

The treatment of dystonias, in general, is unsatisfactory (24). Bromocriptine, a dopaminergic agent, successfully treated a patient with spasmodic torticollis (6), where it was given in high dose (20 mg b.i.d.). We attempted to replicate this finding in patient 4 without success. However, our dose may have been too low (up to 20 mg per day). Electroconvulsive therapy was effective in another patient (4). In the series described by Burke et al. (3), 68% of the patients improved with tetrabenazine, a dopamine depletor, and 39% with anticholinergics. In our series, only one patient had a complete recovery, after a period of 4 years without neuroleptics, at the expense of his continuous psychotomatic behaviour. In patient 3, anticholinergic medication was discontinued with dramatic temporary effect or the torticollis. However, it recurred after 2 years while receiving benzotropine. Patient 4 improved with Baclofen 60 mg but still has some residual symptoms that are not as severe as before the treatment.

In summary, tardive dystonia is a rare drug-induced movement disorder of later onset. It mainly affects younger male patients but may also affect older women. As with TD, it is usually resistant to most known drug treatment measures.

Acknowledgement
We thank Nicole Daoust for excellent secretarial assistance.

References

Address
R. Yasco, M.D.
Douglas Hospital
675 Lasalle Blvd.
Verdun (Quebec)
H4H 1R3
Canada